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Protein-Truncation Mutations in the RP2 Gene in a
North American Cohort of Families with X-Linked
Retinitis Pigmentosa

To the Editor:

X-linked forms of retinitis pigmentosa (XLRP) are a ge-
netically heterogeneous group of retinal dystrophies that
result in relatively severe clinical manifestations (Bird
1975; for a review, see Aldred et al. 1994). The two
major XLRP loci, RP2 (MIM 312600) and RP3 (MIM
312610), have been mapped to Xp11.32-11.23 and
Xp21.1, respectively (for a review see Aldred et al. 1994;
Fujita et al. 1996; Fujita and Swaroop 1996; Thiselton
et al. 1996). The RP15 locus (MIM 300029) has been
mapped to Xp22.13-22.11 in a single family with retinal
degeneration (McGuire et al. 1995), and some evidence
exists for a fourth locus, RP6 (MIM 312612), at Xp21.3
(Musarella et al. 1990; Ott et al. 1990). We recently
localized another genetic locus, RP24 (MIM 300155),
at Xq26-27 by using linkage analysis in an XLRP family
(Gieser et al. 1998). In addition, the disease in some
retinitis pigmentosa (RP) families with apparently X-
linked inheritance does not seem to be linked to markers
in the region of mapped XLRP loci (Teague et al. 1994;
L. Gieser, R. Fujita, and A. Swaroop, unpublished data).
It therefore appears that mutations in several genes on
the X chromosome may lead to RP.

The first XLRP gene, RPGR (retinitis pigmentosa
GTPase regulator), was isolated from the RP3 region
(Meindl et al. 1996; Roepman et al. 1996). Genetic anal-
ysis has suggested that RP3 accounts for 70% of XLRP
(Ott et al. 1990; Teague et al. 1994; Fujita et al. 1997).
However, RPGR mutations are detected in only 20% of
XLRP (and genetically defined RP3) families (Buraczyn-
ska et al. 1997; Fujita et al. 1997; M. Guevara-Fujita,
S. Fahrner, and A. Swaroop, unpublished data). The RP2
gene has recently been isolated by a positional cloning
strategy (Schwahn et al. 1998) and is predicted to encode
a protein of 350 amino acids with homology to cofactor
C, which is involved in folding of B-tubulin (Tian et al.
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Figure 1 Composite nucleotide sequence showing RP2 exons,
including the coding region, and the exon-intron boundaries. The num-
bers on the right refer to the amino acid residues of the predicted RP2
protein.

1996). The RP2 locus is believed to represent 20%-30%
of XLRP in Europe (Ott et al. 1990; Teague et al. 1994),
but little or no genetic evidence exists for an RP2 subtype
in the XLRP families from North America (Musarella
et al. 1990; Ott et al. 1990). Because our haplotype
analysis provided suggestive evidence for RP2 in two
North American families (R. Fujita, L. Gieser, S. G. Ja-
cobson, P. A. Sieving, and A. Swaroop, unpublished
data), we examined the genomic DNA from our cohort
of XLRP patients for causative mutations in the RP2
gene.

The procedures for clinical ascertainment of patients,
obtaining blood samples, and preparation of genomic
DNA have been reported elsewhere (Fujita et al. 1997).
The families included in the present study showed an
apparent X-linked inheritance and no male-to-male
transmission. Affected male individuals had a clinical
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Representative sequencing gels showing two of the RP2 mutations identified in this report. Sequences in the region of causative

mutations are shown. The boxed sequence indicates the 2-bp insertion in patient A514. The location of the 13-bp deletion in patient A1137
is indicated by the horizontal bar. This patient also has a nucleotide substitution, indicated by an asterisk (*).

diagnosis of RP. Initially, one affected male each from
51 XLRP families was included in the RP2 screening
project. This cohort did not include families with a caus-
ative RPGR mutation or those in which the disease was
genetically mapped to the RP3 locus (see Buraczynska
etal. 1997 and Fujita et al. 1997). Oligonucleotide prim-
ers flanking each of the five RP2 exons (Schwahn et al.
1998) were used to amplify products from genomic
DNA. PCR products were sequenced with various prim-
ers (Schwahn et al. 1998), either directly or after gel
purification, by means of the **P-Thermosequenase cy-
cle-sequencing kit (Amersham Life Science). The com-
posite nucleotide sequence of the RP2 exons and at the
exon-intron boundaries is shown in figure 1. The derived
sequence of RP2 polypeptide was identical to that re-
ported elsewhere (Schwahn et al. 1998).

The complete sequencing of RP2 exons and their cor-
responding exon-intron junction regions in 51 North
American XLRP patients revealed sequence changes in
five individuals (fig. 2 and table 1). All of the alterations
were identified in the coding region: a 2-bp insertion in
exon 1, a 13-bp deletion in exon 2, a nonsense mutation
in exon 2, a 7-bp insertion in exon 2, and a 2-bp in-

sertion in exon 4. Except for the C—T change at nucle-
otide 358 (arginine codon 120 in exon 2), resulting in
a nonsense codon, the remaining four changes are de-
letions or insertions that would cause a frameshift.
Therefore, all changes are predicted to result in a trun-
cated RP2 protein. One of the patients (A1137) has an
additional sequence alteration (T—G at nucleotide 322,
leading to a Cys108Gly change); however, because this
individual also has a 13-bp deletion nearby, we did not
determine whether the T—G alteration may represent a
disease-causing substitution. Each sequence change seg-
regated in complete concordance with the disease in the
respective family members that were available for the
study (table 1). We suggest, on the basis of the nature
of mutations and their cosegregation in respective fam-
ilies, that these sequence changes are causative RP2
mutations.

This is the first report demonstrating the presence of
the RP2 subtype in North American families with XLRP.
In addition to reporting five novel RP2 mutations, our
study addresses several significant issues:

1. The RP2 mutations that we identified in our North
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Table 1

RP2 Mutations in Patients with X-Linked Retinitis Pigmentosa

Patient Nucleotide Sequence Meioses
Number  Exon Change Effect of Mutation Examined
A2240 1 77/78insCA Frameshift, 305 amino acids missing 8
A1137 2 T—G at 322 and del 330-342  Cys108Gly and a frameshift, 200 amino acids missing 1
A1135 2 C-oT at 358 Arg120Stop, 230 amino acids missing 4
A512 2 483/484insGGGCTAA Frameshift, 176 amino acids missing 2
A514 4 925/926insAG Frameshift, 35 amino acids missing 3

NoTE.—Nucleotide positions are indicated according to the RP2 coding sequence (National Center for Biotechnology
Information accession number AJ007590; Schwahn et al. 1998).

American cohort of XLRP families are different from
the seven reported in European families (Schwahn et al.
1998), suggesting a high rate of new mutations and a
lack of founder effect. Similar observations have been
made for RPGR mutations in XLRP-RP3 families (Bur-
aczynska et al. 1997).

2. All five mutations reported here are predicted to
result in a truncated RP2 protein. Except for Arg118His,
the other six mutations identified by Schwahn et al.
(1998) would also result in a shorter, or no, RP2 protein.
We therefore suggest that the clinical phenotype in most
if not all affected XLRP-RP2 families is due to the loss
of RP2 function.

3. Our results suggest that it should be possible to
identify a majority of RP2 mutations in XLRP families
by a protein-truncation test. Because RP2 protein is
widely expressed, a relatively inexpensive diagnostic as-
say based on immunoblot analysis with RP2-specific an-
tibody (when available) can also be developed. It should
be noted that a protein-based diagnostic test has been
established for choroideremia, another X-linked retinal
dystrophy (MacDonald et al. 1998). Such a test, how-
ever, would be hard to develop for RPGR because of
the diverse nature of mutations spanning a larger region
of protein (Buraczynska et al. 1997) and multiple mRNA
and protein isoforms (Yan et al. 1998).

4. Most of the mutations (Schwahn et al. 1998; pre-
sent article) are detected in exon 2, which can be am-
plified as a 799-bp product. Additional mutations are
present in two small exons—1 and 4. Of interest, no
mutation has so far been detected in exon 3 or 5. This
clustering of mutations might have significant implica-
tions for functional analysis of the RP2 protein and for
prenatal and presymptomatic diagnosis.

5. Thus far it appears that screening of both RPGR
and RP2 genes leads to identification of disease-causing
mutations in fewer than half of XLRP families. The five
reported RP2 mutations were identified by direct se-
quencing of coding region and exon-intron boundaries.
Analysis of the RP2 promoter region and/or the RP2
genomic DNA by Southern blotting might reveal addi-
tional causative mutations.

Although much of the genetic and phenotypic com-

plexities of XLRP have yet to be resolved, the cloning
of RPGR and RP2 genes represents a milestone in RP
research. Identification of mutations in these two genes
in many XLRP families provides renewed hope for more-
precise diagnosis and better genetic counseling for this
devastating disease.
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A Fifth Locus for Bardet-Biedl Syndrome Maps to
Chromosome 2q31

To the Editor:

Bardet-Biedl syndrome (BBS) is a rare autosomal reces-
sive disorder with major clinical manifestations of retinal
dystrophy, obesity, dysmorphic extremities, hypogeni-
talism, and renal structural and functional abnormali-
ties. It is distinguished from Laurence-Moon syndrome
(MIM 245800), Biemond syndrome II (MIM 210350),
and Alstrom syndrome (MIM 203800) by the absence
of paraplegia, iris coloboma, and perceptive deafness,
respectively. Four genetic loci for BBS have been mapped
to distinct chromosomes, but the finding, in three recent
population surveys, of several unlinked families with
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